Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: BK1254). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Balch, A. L., Hart, R. L. \& Parkin, S. (1993). Inorg. Chim. Acta, 205. 137-143.
Balch, A. L., Latos-Grazynski, L., Noll, B. C. \& Phillips, S. L. (1993). Inorg. Chem. 32, 1124-1129.
Boukhris, A., Lecomte, C., Coutsolelos, A. \& Guilard, R. (1986). J. Organomet. Chem. 303, 151-165.
Coutsolelos, A., Guilard, R., Bayeul, D. \& Lecomte, C. (1986). Polyhedron, 5, 1157-1164.
Coutsolelos, A., Guilard, R., Boukhris, A. \& Lecomte, C. (1986). J. Chem. Soc. Dalton Trans. pp. 1779-1783.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Messerschmitt, A. \& Pflugrath, J. W. (1987). J. Appl. Cṛ̂st. 20, 306315.

Scheidt, W. R. \& Turowska-Tyrk, I. (1994). Inorg. Chem. 33, 1314 1318.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Wynne, K. J. (1984). Inorg. Chem. 23, 4658-4663.

Acta Cryst. (1996). C52, 2710-2713

3-Chloro-3,3-bis(triphenylphosphine- P)-1,2-dicarba-3-rhoda-closo-dodecaboraneDichloromethane (1/1.1)

George Ferguson, ${ }^{a}$ Patricia A. McEneaney ${ }^{b}$ and Trevor R. Spalding ${ }^{b}$
${ }^{a}$ Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada NIG 2W1, and ${ }^{b}$ Department of Chemistry, University College Cork, Cork, Ireland. E-mail: george@xray.chembio.uoguelph.ca

(Received 26 June 1996; accepted 16 July 1996)

Abstract

The title compound, [3,3- $\left.\left(\mathrm{PPh}_{3}\right)_{2}-3-\mathrm{Cl}-3,1,2-\mathrm{RhC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ or $\left[\mathrm{RhCl}\left(\mathrm{C}_{2} \mathrm{H}_{11} \mathrm{~B}_{9}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right] .1 .1 \mathrm{CH}_{2} \mathrm{Cl}_{2}$, contains a triangulated icosahedral closo- $\mathrm{RhC}_{2} \mathrm{~B}_{9}$ cage. Principal bond distances are $\mathrm{Rh}-\mathrm{Cl} 2.423$ (2), Rh-P 2.373 (2) and $2.383(2), \mathrm{Rh}-\mathrm{C} 2.190$ (6) and 2.191 (6), and Rh—B 2.203 (8)-2.289 (8) \AA. The conformation of the $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}$ group above the $\mathrm{C}_{2} \mathrm{~B}_{3}$ face of the dicarbaborane ligand is such that the $\mathrm{Rh}-\mathrm{Cl}$ bond is located above the cage $\mathrm{C}-\mathrm{C}$ vector.

Comment

Rhodium chloride-containing rhodacarbaborane complexes of the type $\left[\left\{\mathrm{Rh}\left(\mathrm{PR}_{3}\right)_{n} \mathrm{Cl}\right\} \mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ have been identified as products from a variety of reactions involving $\left[\left\{\mathrm{Rh}\left(\mathrm{PR}_{3}\right)_{2} \mathrm{H}\right\} \mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ reagents. The compounds [3,3-(PR2 $\left.)_{2}-3-\mathrm{Cl}-3,1,2-\mathrm{RhC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$, with $R_{3}=$ Ph_{3} (Baker et al., 1984) or MePh_{2} (Ferguson et al., 1996), were obtained from the reactions between [3,3-$\left.\left(\mathrm{PPh}_{3}\right)_{2}-3-\mathrm{H}-3,1,2-\mathrm{RhC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$, (1), and aqueous HCl in $\mathrm{CHCl}_{3}\left(R_{3}=\mathrm{Ph}_{3}, 73 \%\right)$, or from [$3-\left\{\eta^{2}-\mathrm{SC}(\mathrm{H}) \mathrm{NPh}\right\}-3-$ $\left.\left(\mathrm{PPh}_{3}\right)-3,1,2-\mathrm{RhC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ and PMePh_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(R_{3}=\right.$ $\mathrm{MePh}_{2}, 96 \%$), respectively (Ferguson et al., 1996). The 16-electron species [2-(PPh_{3})-2- $\left.\mathrm{Cl}-2,1,7-\mathrm{RhC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$, (2), was the unexpected product from the reaction between the 2,1,7-isomer of (1) and aqueous HCl in CHCl_{3} (Baker et al., 1984). We now report an alternative route to $\left[3,3-\left(\mathrm{PPh}_{3}\right)_{2}-3-\mathrm{Cl}-3,1,2-\mathrm{RhC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$, (3), and the structural characterization of (3) using X-ray crystallography.

(3)

The overall form of the rhodadicarbaborane cage structure in (3) is, as expected, a closo 12 -atom species (Fig. 1). Considering the bonding to the exo-cage ligands first, the $\mathrm{Rh}-\mathrm{Cl}$ distance $[2.423$ (2) \AA]] is very similar to that found in $\left[3,3-\left(\mathrm{PMePh}_{2}\right)_{2}-3-\mathrm{Cl}-3,1,2-\mathrm{RhC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ [(4); 2.4205 (8) A; Ferguson et al., 1996], but the Rh-P distances show some differences between the two structures. The Rh—P distances in (3) are not significantly different from their mean value $[2.378(5) \AA$], whereas the equivalent bonds in compound (4) are significantly different [Rh—P1 2.3500 (9) and Rh-P2 2.3414 (9) \AA]. The Rh-P [2.329 (1) \AA] and $\mathrm{Rh}-\mathrm{Cl}$ [2.299 (1) \AA] distances in the 16-electron species [2-(PPh_{3})-2-Cl-2,1,7$\mathrm{RhC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}$] [(2); Baker et al., 1984] are significantly shorter than those in the 18 -electron compounds (3) and (4), suggesting stronger exo-cage bonding in compound (2).

The $\mathrm{Rh} 3-\mathrm{C} 1$ and $\mathrm{Rh} 3-\mathrm{C} 2$ distances in compound (3) (Table 2) are essentially identical and the equivalent distances in (4) [2.208 (3) and 2.205 (3) \AA, respectively] are very similar. In contrast, the $\mathrm{Rh}-\mathrm{C}$ distances in (2) are distinctly different [2.215 (4) and 2.165 (4) \AA]. Since the Cl atom in (2) is trans with respect to the phosphine ligand, with a $\mathrm{P}-\mathrm{Rh}-\mathrm{Cl}$ angle of $175.2(1)^{\circ}$, and the

Fig. 1. A view of compound (3) with the numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

C2 atom is trans with respect to the chloride ligand, with a $\mathrm{Cl}-\mathrm{Rh}-\mathrm{C} 7$ angle of $172.4(1)^{\circ}$, it appears that the difference in the Rh-C distances in the rhodacarbaborane cage of (2) is due to the different trans influences exerted by the exo-cage ligands.

The bonding patterns in the Rh3-B4-B8-B7 regions of compounds (3) and (4) are essentially the same. In both compounds, the Rh3-B8 distances fall between those of Rh3-B4 and Rh3-B7, while there is a notably wider spread of $\mathrm{Rh}-\mathrm{B}$ distances in compound (3) $[2.203$ (8)-2.289 (8) A] compared with (4) $[2.223$ (4) -2.254 (4) A $]$.

The conformation of the $\mathrm{P}_{2} \mathrm{ClRh}$ unit above the $\mathrm{C}_{2} \mathrm{~B}_{3}$ face of the carbaborane ligand in (3) is as expected on the basis of extended Hückel molecularorbital calculations (Mingos, 1977), with the RhCl bond located above the cage $\mathrm{C}-\mathrm{C}$ vector. The same conformation was observed in compound (4). The Rh atom in compound (3), however, is not exactly symmetrically placed in the $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}\left(\mathrm{C}_{2} \mathrm{~B}_{3}\right)$-ligand coordination sphere and angles subtended at the Rh atom show considerable variation, viz. P2-Rh3-B7 137.2 (2) and P1-Rh3-B4 157.7 (2) ${ }^{\circ}$, or P2-Rh3C1 116.3(2) and P1-Rh3-C2 101.9 (2) ${ }^{\circ}$, or $\mathrm{Cll}-$ Rh3-C1 85.4(2) and Cl1-Rh3-C2 $92.6(2)^{\circ}$.

Related interatomic distances within the $\mathrm{C}_{2} \mathrm{~B}_{9}$ cage sections of compounds (3) and (4) are remarkably similar, as might be expected; the $\mathrm{C} 1-\mathrm{C} 2$ distances are 1.606 (9) and $1.618(5) \AA$, the $\mathrm{C}-\mathrm{B}$ distances 1.670 (11)-1.717 (10) and 1.690 (6)-1.733 (6) \AA, and the B-B distances 1.727 (12)-1.827 (10) and 1.748 (7)1.825 (6) \AA in compounds (3) and (4), respectively. There are no unusual intermolecular contacts.

Experimental

closo-[3,3-($\left.\left.\mathrm{PPh}_{3}\right)_{2}-3-\mathrm{H}-3,1,2-\mathrm{RhC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right][(1) ; 0.075 \mathrm{~g}$, $0.09 \mathrm{mmol}], \mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$ and $\mathrm{HC} \equiv \mathrm{CCMe}_{2} \mathrm{NH}_{2}(0.008 \mathrm{~g}$, 0.09 mmol) were introduced into a thick-walled glass microwave reaction vessel (Baghurst \& Mingos, 1992). The solution was subjected to microwave irradiation (650 W) for 5 min . Preparative thin-layer chromatography (TLC) afforded the title compound, (3), in 10% yield. Crystals suitable for X-ray analysis were grown by evaporation of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the compound.

Crystal data

$\left[\mathrm{RhCl}\left(\mathrm{C}_{2} \mathrm{H}_{11} \mathrm{~B}_{9}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right]$.
$1.1 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$M_{r}=888.8$
Triclinic
$P \overline{1}$
$a=11.568$ (2) \AA
$b=13.156$ (3) \AA
$c=15.387(5) \AA$
$\alpha=78.54$ (3) ${ }^{\circ}$
$\beta=80.39(2)^{\circ}$
$\gamma=81.39(2)^{\circ}$
$V=2246.3(10) \AA^{3}$
$Z=2$
$D_{x}=1.314 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4 diffractometer
$\theta / 2 \theta$ scans
Absorption correction:
ψ scans at 4° steps
(North, Phillips \&
Mathews, 1968)
$T_{\text {min }}=0.78, \quad T_{\text {max }}=0.89$
7854 measured reflections
7854 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0610$
$w R\left(F^{2}\right)=0.1364$
$S=0.852$
7854 reflections
460 parameters
H atoms riding ($\mathrm{C}-\mathrm{H} 0.93-$
1.10 and $\mathrm{B}-\mathrm{H} 1.10 \AA$)
$w=1 /\left[\sigma^{2}\left(F_{\rho}^{2}\right)+(0.048 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 25 reflections
$\theta=7.2-13.0^{\circ}$
$\mu=0.67 \mathrm{~mm}^{-1}$
$T=294$ (1) K
Plate
$0.38 \times 0.35 \times 0.17 \mathrm{~mm}$ Red

3445 observed reflections

$$
\begin{gathered}
{[I>2 \sigma(I)]} \\
\theta_{\max }=25^{\circ} \\
h=-13 \rightarrow 13 \\
k=0 \rightarrow 15 \\
l=-17 \rightarrow 18
\end{gathered}
$$

3 standard reflections frequency: 120 min intensity decay: 6.2%
$(\Delta / \sigma)_{\max }<0.001$.
$\Delta \rho_{\text {max }}=0.492 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.767 \mathrm{e}^{-3}$
Extinction correction: none
Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	x	y	z	$U_{\text {eq }}$
Rh3	0.28673 (5)	0.20011 (5)	0.19429 (4)	0.0271 (2)
ClI	0.3292 (2)	0.33781 (14)	0.06752 (11)	0.0396 (5)
PI	0.4373 (2)	0.25555 (15)	0.25608 (12)	0.0341 (5)
P2	0.1213 (2)	0.30962 (15)	$0.25154(12)$	0.0322 (5)

Cl	0.2569 (6)	0.1123 (5)	0.0948 (4)	$0.030(2)$
C2	0.3865 (6)	0.0787 (5)	0.12 .32 (4)	$0.032(2)$
B4	0.1470 (8)	0.0987 (6)	0.1837 (5)	$0.037(2)$
B5	0.1816 (8)	0.0070 (6)	0.1127 (5)	$0.038(2)$
B6	0.3343 (8)	-0.0027 (7)	0.0702 (6)	0.046 (2)
B7	0.3796 (8)	0.0439 (6)	0.2374 (5)	$0.034(2)$
B8	0.2261 (7)	0.0521 (6)	0.2801 (5)	$0.029(2)$
B9	0.1628 (8)	-0.0333 (7)	0.2302 (6)	0.043 (2)
B10	0.2783 (8)	-0.0997 (7)	0.1608 (6)	0.043 (2)
B11	0.4074 (8)	-0.0495 (7)	0.162 .3 (6)	$0.043(2)$
B12	0.3070 (8)	-0.0690 (7)	0.2623 (6)	0.044 (2)
Cll	0.5826 (6)	0.2057 (6)	0.1998 (5)	$0.039(2)$
C12	0.6118 (7)	0.2291 (6)	0.1076 (5)	$0.044(2)$
C13	0.7205 (8)	0.1906 (7)	0.0669 (6)	0.060 (3)
C14	0.8009 (7)	0.1313 (8)	$0.1161(8)$	0.07 .3 (3)
C15	0.7735 (8)	0.1026 (7)	0.2064 (7)	0.068 (3)
C16	0.6649 (8)	0.1400 (6)	0.2488 (6)	$0.055(2)$
C21	0.4466 (6)	0.3970 (6)	0.2452 (5)	0.037 (2)
C22	0.4955 (6)	0.4556 (6)	0.1659 (5)	0.043 (2)
C23	0.5016 (7)	0.5607 (7)	0.1619 (6)	0.063 (3)
C24	0.4590 (7)	0.6096 (6)	0.2333 (7)	0.064 (3)
C25	0.4068 (7)	0.5501 (7)	0.3114 (6)	$0.062(2)$
C26	0.4003 (7)	0.4445 (6)	0.3172 (5)	0.045 (2)
C31	0.4493 (6)	0.2105 (5)	0.3745 (5)	$0.034(2)$
C32	0.3780 (7)	0.1396 (6)	0.4283 (5)	0.048 (2)
C33	0.3864 (8)	0.1045 (6)	0.5174 (5)	$0.054(2)$
C34	0.4707 (9)	0.1367 (7)	0.5562 (5)	0.070 (3)
C35	0.5416 (8)	0.2054 (7)	0.5032 (6)	0.067 (3)
C36	0.5323 (7)	0.2422 (6)	0.4136 (5)	0.054 (2)
C41	0.0088 (6)	0.3528 (5)	0.1759 (5)	$0.036(2)$
C42	0.0257 (7)	0.3415 (6)	0.0877 (5)	0.042 (2)
C43	-0.0602 (8)	0.3814 (7)	0.0344 (6)	0.064 (3)
C44	-0.1656 (8)	0.4318 (7)	0.0674 (7)	0.065 (3)
C45	-0.1853 (8)	0.4419 (7)	0.1552 (8)	0.074 (3)
C46	-0.0983 (8)	0.4051 (7)	0.2089 (6)	0.069 (3)
C51	0.1341 (6)	0.4416 (5)	0.2724 (5)	$0.034(2)$
C52	0.1742 (7)	0.5133 (6)	0.1985 (5)	0.049 (2)
C53	0.1688 (7)	0.6164 (6)	0.2076 (6)	$0.058(2)$
C54	0.1261 (7)	0.6493 (7)	0.2877 (7)	0.062 (3)
C55	0.0865 (8)	0.5784 (7)	0.3606 (6)	0.068 (3)
C56	0.0923 (7)	0.4732 (6)	0.3522 (6)	0.054 (2)
C61	0.0420 (6)	0.2447 (6)	0.3548 (5)	0.041 (2)
C62	-0.0580 (7)	0.1995 (6)	0.3572 (6)	0.051 (2)
C63	-0.1134 (8)	0.1458 (7)	0.4347 (7)	0.073 (3)
C64	-0.0649 (9)	0.1332 (7)	0.5150 (7)	0.077 (3)
C65	0.0326 (8)	0.1785 (6)	0.5137 (5)	0.060 (3)
C66	0.0890 (7)	0.2328 (6)	0.4337 (5)	0.046 (2)

Table 2. Selected geometric parameters $\left(\AA{ }^{\circ},^{\circ}\right)$

$\mathrm{Rh} 3-\mathrm{Cll}$	2.423 (2)	C2-B11	1.670 (11)
Rh3-P1	2.383 (2)	B4-B5	1.745 (11)
Rh3-P2	2.373 (2)	B4-B8	1.827 (10)
Rh3-Cl	2.190 (6)	B4-B9	1.736 (11)
Rh3-C2	2.191 (6)	B5-B6	1.773 (12)
Rh3-B4	2.289 (8)	B5-B9	1.766 (11)
Rh3-B7	2.203 (8)	B5-B10	1.779 (12)
Rh3-B8	2.259 (7)	B6-B10	1.797 (12)
P1-C11	1.849 (7)	B6-B11	1.733 (12)
$\mathrm{Pl}-\mathrm{C} 21$	1.852 (7)	B7-B8	1.784 (11)
$\mathrm{Pl}-\mathrm{C} 31$	1.822 (7)	B7-B11	$1.808(12)$
P2-C41	1.842 (7)	B7-B12	1.760 (11)
P2-C51	1.858 (7)	B8-B9	1.779 (11)
P2-C61	1.818 (7)	B8-B12	1.770 (11)
$\mathrm{C} 1-\mathrm{C} 2$	1.606 (9)	B9-B10	1.798 (12)
CI-B4	1.706 (10)	B9--B12	1.788 (12)
$\mathrm{Cl}-\mathrm{B} 5$	1.698 (9)	B10-B11	1.727 (12)
CI-B6	1.716 (11)	B10-B12	1.783 (12)
C2-B6	1.698 (11)	B11-B12	1.766 (12)
C2-B7	1.717 (10)		
$\mathrm{Cl1}-\mathrm{Rh} 3-\mathrm{Pl}$	85.85 (7)	Pl-Rh3-B4	$157.7(2)$
$\mathrm{Cl1}-\mathrm{Rh} 3-\mathrm{P} 2$	90.07 (7)	PI-Rh3-P2	99.43 (7)
$\mathrm{Cl1}-\mathrm{Rh} 3-\mathrm{Cl}$	85.4 (2)	P2-Rh3-Cl	116.3(2)
$\mathrm{Cl1}-\mathrm{Rh} 3-\mathrm{C} 2$	92.6 (2)	P2-Rh3-B7	137.2 (2)
$\mathrm{Pl}-\mathrm{Rh} 3-\mathrm{Cl}$	143.2 (2)	$\mathrm{Cl}-\mathrm{Rh} 3-\mathrm{C} 2$	43.0 (2)
P1-Rh3-C2	101.9 (2)		

Molecule (3) crystallized in the triclinic system; space group $P \overline{1}$ was assumed and confirmed by the analysis. The intensities of three standard reflections decayed by 6.2% during the course of the data collection; this was allowed for by appropriate scaling during data reduction. It became obvious from examination of difference maps that there were disordered solvent molecules in two distinct locations in the asymmetric unit. The crystals used for the analysis had been grown from pure dichloromethane, which is thus the only choice, but the geometry pattern of the 'solvent' peaks in the difference-map sections did not correspond with any ordered orientation (or simple disordered orientation) of dichloromethane molecules. Accordingly, the contribution of the density of the dichloromethane molecules was subtracted from the measured structure factors using the SQUEEZE (Spek, 1994) option in PLATON95 (Spek, 1995a). This indicated a total occupancy of 1.1 (1) for the disordered dichloromethane over the two sites in the asymmetric unit. Subsequent refinement converged with lower R factors than when attempts had been made to model various dichloromethane contributions; there were no significant changes to the geometry of the Rh -containing molecule.

Data collection: CAD-4-PC Softu'are (Enraf-Nonius. 1992). Cell refinement: SET4 and CELDIM (Enraf-Nonius, 1992). Data reduction: DATRD 2 in NRCVAX 94 (Gabe, Le Page, Charland, Lee \& White, 1989). Program(s) used to solve structure: NRCVAX 94 (Patterson heavy-atom method). Program(s) used to refine structure: NRCVAX94 and SHELXL93 (Sheldrick, 1993). Molecular graphics: NRCVAX94, ORTEPII (Johnson, 1976), PLATON and PLUTON (Spek, 1995b). Software used to prepare material for publication: NRCVAX94, SHELXL93 and WordPerfect (macro PREPCIF).

GF thanks NSERC (Canada) for research grants. TRS thanks Johnson Matthey PLC for the generous loan of rhodium salts. PAMcE thanks Forbairt (Ireland) for a Postgraduate Support Grant.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: AB1408). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Baghurst, D. R. \& Mingos, D. M. P. (1992). J. Chem. Soc. Dalton Trans. pp. 1151-1155.
Baker, R. T., Delaney, M. S., King. R. E., Knobler, C. B., Long, J. A., Marder, T. B., Paxson, T. E., Teller, R. G. \& Hawthorne, M. F. (1984). J. Am. Chem. Soc. 106, 2965-2978.

Enraf-Nonius (1992). CAD-4-PC Sofiware. Version 1.1. EnrafNonius, Delft, The Netherlands.
Ferguson, G., Pollack, J., McEneaney, P. A., O`Connell, D. P., Spalding, T. R., Gallagher, J. F., Macias, R. \& Kennedy, J. D. (1996). J. Chem. Soc. Chem. Commun. pp. 679-681.

Gabe, E. J., Le Page, Y., Charland, J.-P.. Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Mingos, D. M. P. (1977). J. Chem. Soc. Dalton Trans. pp. 602-610.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick. G. M. (1993). SHELXL93. Program for the Refinement of Crustal Structures. University of Göttingen, Germany.

Spek, A. L. (1994). Am. Crystallogr. Assoc. Meet. Abstr. Paper M05. Spek, A. L. (1995a). PLATON. Molecular Geometry Program. University of Utrecht, The Netherlands.
Spek, A. L. (1995b). PLUTON. Molecular Graphics Program. University of Utrecht, The Netherlands.

Acta Cryst. (1996). C52, 2713-2716

(4-Nitrophenyl 1,3,5,8,12-pentaaza-cyclotetradec-3-yl ketone- $\left.N^{1}, N^{5}, N^{8}, N^{12}\right)$ copper(II) Dinitrate

Nicola Sardone ${ }^{a}$ and Maurizio Licchelli ${ }^{b}$
${ }^{a}$ Centro Grandi Strumenti, Università degli Studi di Pavia, I-27100 Pavia, Italy, and ${ }^{b}$ Dipartimento di Chimica Generale, Università degli Studi di Pavia, I-27100 Pavia, Italy. E-mail: nicola@elicona.unipv.it

(Received 5 June 1996; accepted 5 July 1996)

Abstract

In the crystal structure of $\left[\mathrm{Cu}\left(\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{3}\right)\right]\left(\mathrm{NO}_{3}\right)_{2}$, the metal ion lies in an elongated octahedral coordination. Only the four secondary amine N atoms of the macrocycle are bound to the Cu^{2+} centre which resides 0.080 (1) \AA out of the N_{4} donor plane. The coordination sphere is completed by two nitrate O atoms axially coordinated with different $\mathrm{Cu}-\mathrm{O}$ distances.

Comment

Pentaaza macrocyclic systems, known as azacyclams, are obtained through one-pot template syntheses in which Cu^{2+} or Ni^{2+} ions behave as templating agents. These reactions involve the closure of an open-chain tetraamine, preoriented through coordination to the metal centre, by a primary amine, amide or sulfonamide group in the presence of excess formaldehyde and base, and offer the opportunity to append a variety of substituent groups onto the aza macrocyclic system (Fabbrizzi et al., 1991; De Blas et al., 1993; Abba et al., 1994). The crystal structure determination of this class of compounds allows the influence of the substituent group on the spectral and electrochemical properties of the complexes to be defined (e.g. by comparing the distortions in the square-planar or octahedral geometries). Structures of azacyclam complexes of both Cu^{2+} and Ni^{2+} ions have been determined in recent years (Fabbrizzi et al., 1991; De Blas et al., 1993; Abba et al., 1994), but no crystallographic characterization of $\mathrm{a} \mathrm{Cu}^{2+}$-azacyclam complex containing an amido group has been reported previously.

The crystal structure of the title complex, (I), shows copper(II) in an elongated octahedral coordination environment whose deviation from a regular geometry is only partially ascribable to the Jahn-Teller effect (Fig. 1). Only the four secondary amine N atoms of the macrocycle are bound to the metal centre giving a distorted square-planar geometry in which (i) two transN atoms (N 2 and N 4) lie up $[\delta(\mathrm{N} 2)=0.036(2)$ and $\delta(\mathrm{N} 4)=0.037(2) \AA]$ and the other two (N3 and N5) lie down $[\delta(\mathrm{N} 3)=-0.037(2)$ and $\delta(\mathrm{N} 5)=-0.037(2) \AA$ with respect to the N_{4} mean plane (tetrahedral distortion), and (ii) the Cu^{2+} ion resides 0.080 (1) \AA out of the N_{4} donor plane. The first coordination sphere of the metal ion is completed by two nitrate O atoms (O 1 and O 6) coordinated axially, with $\mathrm{Cu}-\mathrm{O}$ distances that are quite different $[\mathrm{Cu}-\mathrm{O} 12.437(2)$ and $\mathrm{Cu}-$ O6 2.673 (2) Å]. This is probably related to the Cu^{2+} displacement from the secondary amine plane towards the nitrate Ol atom. Although the $\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 6$ angle [$168.6(1)^{\circ}$] does not deviate excessively from linearity, the $\mathrm{O}-\mathrm{Cu}-\mathrm{N}$ angle values, varying in the range $81.9(1)-98.7(1)^{\circ}$, are indicative of a significant distortion from a regular octahedron.

(I)

It is interesting to compare the copper geometry observed here with that found in the structure of (3-methanesulfonyl-1,3,5,8,12-pentaazacyclotetradecane)dinitratocopper(II) (De Blas et al., 1994). Although the $\mathrm{Cu}-\mathrm{N}$ bond distances and angles and the average $\mathrm{Cu}-$ O distance are very similar, De Blas and co-workers

Fig. 1. A perspective view of the title complex shown with 30% probability ellipsoids.

